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A hybrid-input–output algorithm is applied to reconstruct hypothetical carbon

cluster crystals in both two and three dimensions. It is shown that normalizing

the Bragg peaks to those from a cluster of solid spheres or discs with uniform

electron density can often lead to faithfully reconstructed objects at both atomic

and low resolutions. It is shown that, even without the central peak, low-

resolution structures can still be reconstructed with good fidelity. The effect of

Bragg-peak noise on object reconstruction is examined throughout the paper.

Successful reconstructions of 500- and 1000-atom carbon cluster crystal

structures at both atomic and low resolutions are given.

1. Introduction

The success of Fourier-transform-based dual-space iteration

algorithms, such as the error-reduction (ER) (Gerchberg &

Saxton, 1972), the hybrid-input–output (HIO) (Fienup, 1982)

and the difference map (DM) (Elser, 2003a,b), in solving the

structures of non-periodic objects from X-ray scattering

intensities alone has generated interest in applying such

algorithms, including a more recent algorithm of charge flip-

ping (CP), to periodic objects (Elser, 2003b; Oszlányi & Süto��,

2004, 2005; Wu et al., 2004; Oszlányi et al., 2006). The intuition

in the solvability of the structure of a non-periodic object from

its X-ray scattering intensity alone is that the scattering

intensity, in principle, can be measured infinitely finely

(limited by X-ray spectrometer resolution widths). Therefore,

the number of unique equations, each of which relates (to a

very good approximation due to Gibbs ripple effect) the

scattering intensity at a particular X-ray wavevector transfer

to the object’s electron densities at equal-spaced grid points,

with the grid step size determined by the maxima of the

measured wavevector transfers (but not how fine the step size

is in reciprocal space), can be much greater than the number

of grid points (Miao et al., 2003). In recent years, many non-

periodic object structures of one dimension (Zheng et al.,

2001), two dimensions (Miao et al., 1999; Marchesini et al.,

2003; He et al., 2003) and three dimensions (Miao et al., 2002;

Chapman et al., 2006) have been reported to have been solved

by such algorithms. In the case of a periodic object, typically

what are measured are the Bragg-peak intensities and,

therefore, neglecting X-ray absorption, the number of grid

points on the object, namely the number of unknowns, exceeds

the number of measured Bragg peaks by about a factor of 2,

due to the basic relation Ið�QHKLÞ ¼ IðQHKLÞ for the scat-

tering intensity, where QHKLis the X-ray wavevector transfer

of a Bragg peak with Miller indices (H, K, L). Therefore, it

seems impossible to solve the structure of a crystal by applying

dual-space iteration algorithms to Bragg-peak intensities

alone. Nevertheless, Elser reported (Elser, 2003b) successfully

solving crystal structures for cases of up to a few hundred non-

H atoms in a primitive unit cell with Bragg peaks available up

to a crystallographic resolution of about 1 Å or better with his

DM algorithm, by applying a real-space constraint of keeping

the N largest peaks on the grid points, with N the number of

atoms in the primitive unit cell, and setting the rest of the

electron densities to zero. The peak-picking procedure was

used previously in the well known direct phasing method of

Shake-n-Bake (SnB) of Weeks et al. (Weeks et al., 1993; Miller

et al., 1993). (In addition, SnB uses a minimum function to

restrict the phases.) In both Weeks et al.’s and Elser’s work,

the atomic structure factor is normalized to a point-like atom,

simply by dividing the original scattering intensity by that of

the atom. In the CP algorithm, no such division is carried out.

The direct phasing in SnB, DM and CP tend to fail when Bragg

peaks are not available at atomic resolutions and, in addition,

in the case of SnB, typically when the number of non-H atoms

in a primitive unit cell exceeds 2000.

This work, using the HIO algorithm, tries to phase Bragg

peaks directly with data available up to any resolution. The

keys to this work are a proper normalization of the scattering

intensities and setting an upper limit to the electron density in

the HIO procedure. Instead of normalizing to a point atom,

the atoms are normalized to solid spheres of uniform electron

density of one electron per unit volume, with a proper choice

of the solid-sphere radius R. Examples of solving hypothetical

two- and three-dimensional carbon cluster crystals of up to

1000 atoms in a primitive unit cell are given. It will be shown

that a crystal structure can still be found even if the central

Bragg peak is missing. The simulated Bragg peaks are created



with Poisson noises, with adjustable noise levels. The unit cell

in this work always means a primitive unit cell and lattice

symmetries are not taken into account. Resolution, in this

paper, if not specified otherwise, always means crystal-

lographic resolution, 2�=Qmax with Qmax the largest wave-

vector transfer for the available Bragg peaks.

2. Algorithm details

For crystals composed of atoms of type A, the structure factor

amplitude is normalized to

jFnormðQHKLÞj ¼
jFðQHKLÞj

jFAðQHKLÞj
jFsphereðQHKL;R0=�SÞj; ð1Þ

where jFðQHKLÞj is the unit-cell X-ray scattering structure

factor amplitude at Bragg peak QHKL, FAðQHKLÞ is the scat-

tering factor for atom A and FsphereðQHKL;R0=�SÞ is the scat-

tering factor for a solid sphere of radius R0=�S with uniform

electron density of one electron per unit volume. R0 is

conveniently set as the atom radius. Choosing a proper value

for �S can be Qmax dependent, as will be shown. Equation (1)

transforms the question of finding the electron-density profile

for a cluster of atoms of type A into that for a cluster of

uniform solid spheres of radius R0=�S. In the first step of the

HIO algorithm, random positive electron densities are

generated and the phases of the Fourier transform of the

random densities are obtained. The next iteration couples the

normalized structure factor amplitudes with the phases and

carries out an inverse Fourier transform to generate an elec-

tron-density profile. The electron-density profile is then

subjected to real-space constraints to generate the output

electron-density profile from the second iteration. The

procedure is best described by the following mathematical

expression:

density ¼ FT�1ðjFnormðQHKLÞj expði�nÞÞ

if density ðna; nb; ncÞ>�H; �nþ1ðna; nb; ncÞ

¼ �H � densityðna; nb; ncÞ

elseif density ðna; nb; ncÞ<�L; �nþ1ðna; nb; ncÞ

¼ �nðna; nb; ncÞ � �L � density ðna; nb; ncÞ

else �nþ1ðna; nb; ncÞ ¼ density ðna; nb; ncÞ

�nþ1 ¼ angle½FTð�nþ1Þ�

�1 ¼ 0; �1 ¼ angle½FTðrandom positive densityÞ�:

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

In equation (2), �n are the phases at the nth iteration,

�nðna; nb; ncÞ is the electron density at grid ðna; nb; ncÞ at the

nth iteration and angle[ . . . ] means to obtain the phase angles.

In equation (2), FTð. . .Þ and FT�1ð. . .Þ mean Fourier and

inverse Fourier transforms, respectively. �H and �L are two

positive numbers, typically chosen between zero and one. In

this paper, all HIO procedures are started with (�H ¼ 0:2,

�L ¼ 0:9) (large correction) and after a certain number of

iterations, typically as a quantum of 50, (�H ¼ 0:9, �L ¼ 0:2)

(small correction) is used for the rest of the iterations. In

equation (2), �H is positive and often chosen around one.

Throughout this paper, �L ¼ 0.

3. Examples

3.1. Three-dimensional Lennard-Jones carbon clusters

Lennard-Jones carbon cluster atom coordinates are

obtained from the Cambridge Cluster Database. Each carbon

cluster crystal is formed by packing the clusters in close

contact in all three dimensions in an orthorhombic lattice. A

500-atom carbon cluster is chosen. The view along the z axis of

the 500-atom carbon cluster is shown in Fig. 1(a), with the dots

indicating atom centers. The atom–atom closest distance is

1.12 Å, and thus R0 ¼ 0:56 Å for the solid sphere is taken. The

orthorhombic lattice parameters are found to be a ¼ 9:06,

b ¼ 10:23 and c ¼ 10:44 Å, corresponding to an occupancy

ratio of 0.380. To mimic the noise level in the scattering data,

Poissonð�noiseIðQHKLÞÞ=�noise is used for the simulated Bragg

peak intensity. Poisson( . . . ) represents a Poisson distribution

random-number generator with the argument as the mean.

�noise is a positive number. The number of grids in the unit cell

along the three cell dimensions are Na, Nb and Nc, which are

set to be odd positive numbers. The largest wavevector

transfer is set to be Qmax ¼ �ðNa � 1Þ=a, beyond which the

Bragg-peak intensities are deliberately set to be unavailable

and the corresponding structure factor amplitudes are to float

in the HIO procedure. This means that about half of the

structure factors are to float.

Now take Na ¼ Nb ¼ Nc ¼ 37, which gives Qmax ¼

12.48 Å�1 corresponding to a resolution of 0:50 Å. The Bragg

peak at QHKL ¼ 0 is available [the case when I(0) is unavail-

able will be discussed later in this paper]. At �S ¼ 2:2,

�H ¼ 1:2 and 200� 2 iterations, which means 200 iterations

with (�H ¼ 0:2, �L ¼ 0:9) followed by 200 iterations with

(�H ¼ 0:9, �L ¼ 0:2), Fig. 1(b) shows a view along the z axis of

a reconstructed 500-atom carbon cluster structure. In fact, the

reconstructed structure is for the corresponding uniform solid-

sphere cluster and this meaning is implied throughout this

paper. The color of each dot in Fig. 1(b) represents the value

of the electron density at that location. The individual solid

spheres (composed of many dots) are clearly visible and their

relative coordinates closely resemble those of the original

object shown in Fig. 1(a). Translational shift and inversion of

the obtained structure in relation to the original one can

happen since both give the same Bragg peak intensities.

To make Fig. 1(b) more appealing, the electron-density

values at half of a grid are computed and shown through

typical Fourier expansion formula for a periodic object.

In Fig. 1(b), only those electron densities larger than

0.4 Å�3 are shown. The reconstructed 500-atom carbon

cluster has a crystallographic R-factor of 0.158, defined byP
HKL jjFjHIO � jFjcalcj=

P
HKL jFjcalc, where jFjcalc and jFjHIO

are the calculated and HIO-procedure-obtained structure

factor amplitudes, respectively. Throughout this paper,

R-factor always means the crystallographic R-factor. The

signal-to-noise ratio (SNR) for Fig. 1(b) is 84.9.

To measure how much the reconstructed structure matches

the original one, mean phase errors between the HIO-proce-

dure-obtained phases and the phases calculated from the

original solid-sphere cluster coordinates are computed for
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ðjHj � 2; jKj � 2; jLj � 2Þ and ðjHj � 3; jKj � 3; jLj � 3Þ

(computing the mean phase error for all Bragg peaks can be

very time consuming). In calculating the mean phase errors, to

take care of object translational shift, the obtained object is

shifted one grid step size at a time to cover all the grid points

(this can also be done at a half grid step size to gain more

accuracy). In addition, the mean phase errors are computed

for both the original object and its inversion. Among all the

translational shifts and the inversion, the minimum mean

phase error is selected to be the mean phase error between the

obtained and original objects. The mean phase errors for

Fig. 1(b) are quite small at 0.312 and 0.397 for

ðjHj � 2; jKj � 2; jLj � 2Þ and ðjHj � 3; jKj � 3; jLj � 3Þ,

respectively. To simplify notation, in this paper, e�2

and e�3 are used to denote the mean phase errors for

ðjHj � 2; jKj � 2; jLj � 2Þ and ðjHj � 3; jKj � 3; jLj � 3Þ,

respectively. That a higher QHKL creates a larger phase error is

understandable since at a higher QHKL a small deviation in

atom location generates a large phase shift due to the nature

of the Fourier transform. In addition to their relatively small

values, the translational shifts for e�2 and e�3 in Fig. 1(b) are

the same, indicating that the obtained structure matches the

original one well.

It is not the case that every run will end up with a very good

picture like Fig. 1(b). The obtained structures from some runs

do not resemble the original 500-atom carbon cluster at all,

and large R-factors and mean phase errors occur. To measure

the success rate, 20 HIO runs are generated at �S ¼ 2:0 with

an SNR of 72.7. The rest of the HIO input parameters take the

same values as those for Fig. 1(b) and the central peak is

available. The R-factors and mean phase errors for the 20 runs

are shown in Fig. 2. The figure shows that e�2 and e�3, as well

as the R-factor, after most runs, are of satisfactorily small

values, and the corresponding obtained structures look very

similar to the original one. The occasionally large mean phase
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Figure 2
R-factors (square), e�2 (diamond), e�3 (cross) and density fluctuations
(circle) for each of 20 HIO runs, for the 500-atom carbon cluster crystal,
at a resolution of 0.50 Å (Na ¼ Nb ¼ Nc ¼ 37), SNR ¼ 72:7, �S ¼ 2:0
and �H ¼ 1:2, with 200� 2 iterations. The central peak is available.

Figure 1
(a) View along the z axis of the 500-atom carbon cluster obtained from
the Cambridge Cluster Database. Each dot represents an atom center.
Cell dimensions are a ¼ 9:06, b ¼ 10:23, and c ¼ 10:44 Å. (b) A
reconstructed 500-atom carbon (actually uniform solid sphere) cluster
viewed along the z axis, obtained from a HIO procedure with 200� 2
iterations, at a resolution of 0.50 Å (Na ¼ Nb ¼ Nc ¼ 37), with �S ¼ 2:2
and �H ¼ 1:2. The first 200 iterations use (�H ¼ 0:2, �L ¼ 0:9) and the
next 200 iterations use (�H ¼ 0:9, �L ¼ 0:2). The electron densities at
half of a grid step are also computed through the standard Fourier
transform and shown. Electron densities less than 0.4 Å�3 are not
shown. Each small spot represents an electron density at a grid or half
grid point. SNR = 84.9, R-factor = 0.158, e�2 = 0.312 and e�3 = 0.397. The
central peak is available. The color bar indicates the electron-density
values.



errors are close to those from a random positive electron-

density profile. In fact, e�2 and e�3 between a random positive

electron-density structure and the 500-solid-sphere cluster are

about 1:14� 0:06 and 1:31 � 0:02, respectively. In Fig. 2, the

density fluctuation is meant to test its usefulness in gauging

how good the final reconstructed structure is, and is defined as

the average difference between the electron density at one

pixel to its six nearest neighbors. Mathematically,

density fluctuation

¼

� PNa;Nb;Nc

na¼1;nb¼1;nc¼1

P
m¼�1;1

½j�ðna; nb; ncÞ � �ðna þm; nb; ncÞj

þ j�ðna; nb; ncÞ � �ðna; nb þm; ncÞj þ j�ðna; nb; ncÞ

� �ðna; nb; nc þmÞj�

�
ð6NaNbNcÞ

�1: ð3Þ

It is thought that when the obtained structure is faithful and

the grid step size is not that large, namely, the solid sphere can

cover many grid points, the density fluctuation tends to be

small since the major density difference occurs only at the

boundary between the sphere and the non-sphere region. It is

obvious from the figure that the density fluctuation does

behave synchronously to the R-factor and mean phase errors

and has a value of about 0.047 for the faithfully reconstructed

objects. Therefore, the density fluctuation does, as expected, in

addition to the R-factor, offer a measure for the goodness of

the obtained structure, at least for the case when high-reso-

lution data are available.

To demonstrate how easy it is to apply the HIO algorithm to

reconstruct the original carbon cluster crystal structure when

high-resolution X-ray scattering data are available, Fig. 3(b)

shows, in the view along the z axis, a reconstructed 1000-atom

carbon cluster, at �S ¼ 2:0. The original 1000-atom carbon

clusters are set to form a close-contact primitive orthorhombic

lattice with unit-cell dimensions a ¼ 12:39, b ¼ 12:02 and

c ¼ 12:55 Å. In Fig. 3(b), Na ¼ Nb ¼ Nc ¼ 37, which gives a

resolution of 0.52 Å. The SNR is about 200. The HIO-related

parameters take the same values as those for Fig. 1(b), with

200� 2 iterations. The central peak is available. The recon-

structed carbon cluster (only densities larger than 0.4 are

shown) clearly resembles the original one shown in Fig. 3(a).

In Fig. 3(b), the R-factor is 0.103, e�2 ¼ 0:185, e�3 ¼ 0.289,

and the density fluctuation is 0.062.

Now, let us study the cases when only low-resolution data

are available. For the 500-atom carbon cluster crystal, take

Na ¼ Nb ¼ Nc ¼ 9, corresponding to a resolution of 2.27 Å.

The generated Bragg peaks have an SNR of 31. At �S ¼ 0:94,

with central peak available, and the rest of the HIO-proce-

dure-related parameter values the same as those for Fig. 1(b),

a reconstructed 500-atom carbon cluster is shown in Fig. 4(a).

The obtained object has an R-factor of 7:7� 10�12, e�2 of

0.677, e�3 of 0.839 and density fluctuation of 0.219. The small

R-factor and mean phase errors do indicate a good recon-

structed object. Visually, the shape of the reconstructed object

resembles well the original one shown in Fig. 4(b). Note that

�S < 1 corresponds to expanding the spheres and thus the

nearest neighbors overlap a little bit, creating a small region

which has an electron density of 2 Å�3. However, since the

largest wavevector transfer is not that high at a value less than

12.5 Å�1, the inverse Fourier transform will not show the high

density but a much smoother electron-density profile between

the neighboring spheres.

To measure the success rate for the low-resolution case, Fig.

5(a) plots the mean phase errors and density fluctuations

(multiplied by 6) for each of 20 HIO runs, with �S ¼ 0:94,

SNR = 31, and the rest of the HIO input parameter values the

same as those for Fig. 4(a). Fig. 5(a) shows that, out of the 20

runs, quite a few reconstructed objects have small mean phase
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Figure 3
Like Fig. 1, structures viewed along the z axis, for the 1000-atom carbon
cluster. The cell dimensions are a ¼ 12:39, b ¼ 12:02 and c ¼ 12:55 Å.
Resolution ¼ 0.52 Å (Na ¼ Nb ¼ Nc ¼ 37), SNR ¼ 200, �S ¼ 2:0,
R-factor ¼ 0.103, e�2 ¼ 0:185 and e�3 ¼ 0:289. The central peak is
available.



errors, although the success rate is much less than that

for the case when high-resolution data are available. Fig. 5(a)

also indicates that the density fluctuation parameter does

not behave monotonically with the mean phase errors (the

R-factors are extremely small, close to zero). The intuition is

that the grid step size is simply too large, relative to the atom

diameter, to make the density fluctuation parameter a good

measure. Note that the reconstructed object shown in Fig. 4(a)

is from run 15 in Fig. 5(a). The extremely small R-factors for

the case of �S ¼ 0:94 suggests that there are many ways to

arrange the electron densities so that the computed Bragg-

peak intensities match the measured ones, and therefore

selecting the faithfully reconstructed objects is challenging. In

order to make the electron-density fluctuation a good measure

for selecting a faithfully reconstructed object, the solid spheres

can be expanded a little more with �S ¼ 0:87, which actually

results in increased electron-density smoothness between

nearest spheres after the inverse Fourier transform. Fig. 5(b)

plots the R-factors, mean phase errors and density fluctuations

(multiplied by 6) from 20 HIO runs at �S ¼ 0:87 and the rest

of the HIO input parameters take the same values as those for

Fig. 5(a). We note that runs 9 and 15 in Fig. 5(b) have the

smallest mean phase errors, and also have the smallest density

fluctuations, although the differences from the others are

small, suggesting that when data are available up to a reso-

lution of 2.27 Å, by expanding the spheres with �S ¼ 0:87, the

density fluctuation parameter may provide a good measure to

select faithfully reconstructed objects.

3.2. Two-dimensional crystals of carbon atom clusters

The scattering structure factor normalization and HIO

procedure described in the last subsection can also be applied
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Figure 5
The mean phase errors e�2 (diamond) and e�3 (square), and density
fluctuations (circle) from each of 20 HIO runs at Na ¼ Nb ¼ Nc ¼ 9
(resolution 2.27 Å), for the 500-atom carbon cluster crystal, with
�H ¼ 1:2 and 200� 2 iterations. The central peak is available. (a)
SNR ¼ 31 and �S ¼ 0:94. (b) SNR ¼ 27 and �S ¼ 0:87. The density
fluctuations shown are the real ones multiplied by 6.

Figure 4
(a) A tilted view of a reconstructed 500-atom carbon cluster at a
resolution of 2.27 Å (Na ¼ Nb ¼ Nc ¼ 9), SNR ¼ 31 and �S ¼ 0:94. The
central peak is available. The other HIO-related parameters have the
same values as those for Fig. 1(b). R-factor = 7:7� 10�12, e�2 = 0.677 and
e�3 = 0.839. The color bar indicates the electron-density values. (b) A
tilted view of the original 500-atom carbon cluster, with the dots
representing atom centers.



to reconstruct two-dimensional crystal objects. As an example,

a crystal of rings each of which is formed by 40 C atoms is

studied. The rings form a close contact hexagonal lattice with

unit-cell lengths of a ¼ b ¼ 15:4 Å and the angle between the

unit-cell base vectors is � ¼ �=3 rad. The electron density of

the original object before normalizing the C atoms to uniform

discs is shown in Fig. 6(a). Fig. 6(b) shows the reconstructed

ring with a resolution of 0.53 Å, namely, Qmax ¼ 11:8 Å�1. The

central peak is available. For Fig. 6(b), Na ¼ Nb ¼ 59, the

SNR is 31, �S ¼ 2, �H ¼ 1:2 and the number of iterations is

200� 2. Fig. 6(c) shows the reconstructed object at a resolu-

tion of 1.9 Å (Na ¼ Nb ¼ 17 and Qmax ¼ 3:3 Å�1), with an
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Figure 7
(a) Electron density for the original object: a �-shaped C-atom cluster.
(b) A reconstructed object, at a resolution of 0.52 Å, SNR ¼ 32, Na ¼ 31,
Nb ¼ 23 and �S ¼ 1:8. (c) A reconstructed object at a resolution of 1.9 Å,
SNR ¼ 24, Na ¼ 9, Nb ¼ 7 and �S ¼ 0:867. Both (b) and (c) use
�H ¼ 1:2 and 200� 2 iterations. Color bars indicate electron-density
values. Electron densities less than 0.4 Å�3 are shown as 0.

Figure 6
(a) Electron density for a hypothetical 40-atom carbon cluster ring. (b) A
reconstructed object for the hexagonally packed 40-atom carbon rings
(actually the corresponding 40 uniform discs), at a resolution of 0.53 Å.
Na ¼ Nb ¼ 59, SNR ¼ 31, �S ¼ 2, �H ¼ 1:2 and the number of iterations
is 200� 2. (c) A reconstructed ring at Na ¼ Nb ¼ 17, SNR ¼ 16:1,
�S ¼ 0:867 and the other parameters have the same values as those in (b).
The central peak is available for both (b) and (c). For both (b) and (c),
electron densities less than 0.2 Å�3 are shown as 0. Color bars indicate
electron-density values.



SNR of 16.1. In Fig. 6(c), �S ¼ 0:867, and the rest of the HIO-

related input parameters take the same values as those for Fig.

6(b). In Figs. 6(b) and 6(c), electron densities less than

0.2 Å�3are shown as 0. The crystallographic R-factors for Figs.

6(b) and 6(c) are 0.077 and 0.0046, respectively.

Another two-dimensional crystal object studied is shown in

Fig. 7. The original non-normalized �-shaped object of

C-atom cluster, shown in Fig. 7(a), form a rectangular lattice

with unit-cell lengths of a ¼ 7:84 and b ¼ 5:60 Å. For Fig.

7(b), SNR = 31.9, a resolution of 0.52 Å (Na ¼ 31 and

Nb ¼ 23), �S ¼ 1:8, and an R-factor of 0.12. Fig. 7(c) has an

SNR of 23.7, a resolution of 1.9 Å (Na ¼ 9 and Nb ¼ 7),

�S ¼ 0:867, and an R-factor of 0.0052. Electron densities less

than 0.4 Å�3 are shown as 0. Figs. 7(b) and 7(c) use �H ¼ 1:2
and 200� 2 iterations.

4. Effects of missing central peak and Bragg-peak noise

In a typical protein crystallographic experiment, the central

peak is not available and therefore it is important to study the

effect of the missing central peak. To investigate the missing-

central-peak effect, the 500-atom carbon crystal structure

is reconstructed against �S with a floating Fð0Þ. Twenty

HIO runs with various levels of resolution with Qmax of

12.5, 8.3, 6.24, 4.16 and 2.77 Å�1, corresponding to the

number of grids of Na ¼ Nb ¼ Nc ¼ 37, Na ¼ Nb ¼ Nc ¼ 25,
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Figure 8
Plots of the averages of the R-factor, mean phase errors and mean phase error standard deviations versus �S over 20 HIO runs for the 500-atom carbon
cluster crystal at crystallographic resolutions of 0.50 Å (blue), 0.76 Å (green), 1.01 Å (red), 1.51 Å (cyan) and 2.27 Å (magenta). SNRs are around 100.
�H ¼ 1:2 and 200� 2 iterations. (a)–(e) No central peak. ( f )–(j) With central peak.



Na ¼ Nb ¼ Nc ¼ 19, Na ¼ Nb ¼ Nc ¼ 13 and

Na ¼ Nb ¼ Nc ¼ 9, are carried out. The SNRs are typically

more than 100. In the HIO procedure, �H ¼ 1:2 and 200� 2

iterations are taken. The results are plotted in Figs. 8(a)–(e). In

the figure, std denotes the standard deviation, h . . . i denotes

the average, and the legend shows the line colors representing

resolutions in Å. For comparison, runs similar to those in Figs.

8(a)–(e) are carried out with the central peak available, and

the results are shown in Figs. 8( f)–(j). Two obvious effects are

observed. First, the R-factors become very small if the central

peak is unavailable at 1<�S � 3, indicating much freedom in

selecting an electron-density profile to fit the measured Bragg-

peak intensities. Second, for the case of resolution of 0.50 Å,

when the central peak is available, �S ¼ 2 is an excellent

choice to faithfully reconstruct the original object, as indicated

by the significant dips of the R-factor and mean phase errors.

However, those desirable features are lost when the central

peak is unavailable, suggesting that, even when very high

resolution scattering data are available, without the central

peak �S ¼ 2 may not yield a good reconstructed object. What

is important is that the figures strongly suggest that the

probability of obtaining desirable reconstructed objects with a

�S slightly less than one is relatively high and nearly unaf-

fected by the availability of the central peak. Regardless of the

central peak availability, with �S around 0.87, the mean phase

errors dip dramatically and the respective standard deviations

increase. The large standard deviations show that there is a
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Figure 9
(a) A reconstructed 500-atom carbon cluster, corresponding to the
minimum mean phase error among 20 HIO runs [see (b), run no. 6], at a
resolution of 2.27 Å (Na ¼ Nb ¼ Nc ¼ 9), without the central peak.
SNR ¼ 37, �S ¼ 0:87, �H ¼ 1:2 and 200� 2 iterations. Each dot
represents the electron-density value by the color at that location. The
units for all three axes are Å. (b) For each of the 20 runs, the R-factor
(blue), e�2 (green), e�3 (red), electron-density fluctuation (black,
multiplied by 6), and the computed central peak intensity (cyan), which
is multiplied by �3

S=600, are plotted.

Figure 10
Plots of the averages of the R-factors, mean phase errors and mean phase
error standard deviations versus �S, for 20 HIO runs, for the 500-atom
carbon cluster crystal, at SNR ¼ 20 (blue), 6.3 (green) and 3.1 (red).
Na ¼ Nb ¼ Nc ¼ 9 (resolution = 2.27 Å), �H ¼ 1:2 and 200� 2 itera-
tions.



substantial number of runs whose reconstructed objects have

much lower mean phase errors.

To show that, even without the central peak, the HIO

algorithm can still yield a faithfully reconstructed object, 20

runs for the 500-atom carbon cluster crystal are carried out, at

Na ¼ Nb ¼ Nc ¼ 9 (resolution ¼ 2:27 Å). The computer-

generated Bragg peaks have an SNR of 37. The HIO proce-

dure has a floating central structure factor, �S ¼ 0:87 and

�H ¼ 1:2. As usual, 200� 2 iterations are taken. Fig. 9(a)

shows the reconstructed object which has the lowest mean

phase errors among the 20 runs. The unit for the x, y, z axes is

Å. Electron densities less than 0.4 Å�3 are not shown. The

mean phase errors are well below those from a random elec-

tron-density profile, and the reconstructed object visually

resembles well the original one at low resolutions. Fig. 9(b)

plots some results from the 20 runs of the HIO procedure. The

computed central structure factors multiplied by �3
S and

divided by 600, indicated in the figure as Fð0Þ=600, are very

close to the theoretical value of 0.613. In fact, run no. 6 whose

obtained structure is shown in Fig. 9(a) gives �3
S Fð0Þ = 365,

which is very close to the true value of 368.

In a crystallographic experiment, the Bragg peaks may have

a low SNR. To investigate the effect of the noise, especially

when the SNR is low, Bragg peaks at several SNR levels for

the 500-atom carbon cluster crystal, at Na ¼ Nb ¼ Nc ¼ 9

(resolution = 2.27 Å), are generated, without the central peak.

HIO procedures with �H ¼ 1:2 and 200� 2 iterations are

carried out at several �S. The results are plotted in Fig. 10.

Note that each point in the figure is the result of 20 HIO runs.

The levels of SNR are shown in the legend. It is clear from the

figure that, with decreasing SNR, the R-factor increases. More

significantly, over the region of �S where faithfully recon-

structed objects can be obtained, with decreasing SNR the

mean phase errors increase whereas their respective standard

deviations decrease, indicating that with decreasing SNR the

HIO procedure is less and less able to reconstruct the original

object, as expected. Furthermore, the figure shows that, at an

SNR of 20, the HIO procedure is able to reconstruct the

original object well, as indicated by the small R-factor and

mean phase errors, which is not true when the SNR is at a very

low value of 3.1. When the SNR is 6.3, the algorithm may

marginally be able to faithfully reconstruct the original object.

Care is needed about the noise effect. It is known that,

for a non-periodic object, when the SNR is low enough, the

R-factor from the entire electron distribution (support plus

non-support regions but not the support region only) given by

the HIO procedure may increase with increasing number of

iterations (unstable solution). To see the solution dependence

on the iteration numbers with noisy data, Fig. 11 plots, for the

500-atom cluster crystal, at Na ¼ Nb ¼ Nc ¼ 9, the averages

of the R-factors and e�3 over 20 runs versus �S at three levels

of SNR of 11, 6.1 and 2.9, with several different iteration

numbers. �H ¼ 1:2 and the central peak is unavailable. In the

figure, each column of subplots is for a particular level of SNR.

The legends indicate the number of iterations. At all three

levels of SNR, there is no clear indication that, with increasing

number of iterations, either the R-factor or e�3 becomes

larger. To examine the SNR effect on the reconstructed

objects when high-resolution data are available, five runs at

four levels of SNR of 2.8, 5.1, 9.9 and 20, for the 500-atom

carbon cluster crystal with Na ¼ Nb ¼ Nc ¼ 37 were carried

out. In the HIO procedure, �H ¼ 1:2, �S ¼ 2 and the central

peak is available. Fig. 12 plots the averages of the R-factors

versus iteration number. At all four levels of SNR, there are

cases when increasing number of iterations comes with

increasing R-factor values. Nevertheless, the R-factor oscilla-

tion range is small and the general trend is that a larger

number of iterations corresponds to a smaller R-factor.
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Figure 11
Plots of the averages of the R-factors and e�3 versus �S, at several SNR levels, for 20 HIO runs, for the 500-atom carbon cluster crystal, at a resolution of
2.27 Å (Na ¼ Nb ¼ Nc ¼ 9) and iteration numbers of 50� 2 (blue), 100� 2 (green), 200� 2 (red), 300� 2 (cyan) and 400� 2 (magenta). �H ¼ 1:2 and
the central peak is unavailable. std indicates standard deviation. (a)–(b) SNR = 11. (c)–(d) SNR = 6.1. (e)–( f ) SNR = 2.9.



5. Structure factor scale effect

The experimentally obtained structure factor amplitudes may

be different from the theoretically calculated ones by a scale

factor, due to reasons such as illuminated sample volume,

detector sensitivity and incoming X-ray flux. To see how the

scale factor affects the R-factor and the average electron

density, 20 runs for the 500-atom carbon cluster with 12

different scale factors ranging from 0.1 to 2 are carried out.

Each run uses 200� 2 iterations, Na ¼ Nb ¼ Nc ¼ 9,

�S ¼ 1:0, �H ¼ 1:0 and for all the runs the SNR is 680. The

central peak is unavailable. The results are plotted in Fig. 13.

In the figure, FScale denotes the scale factor so that the HIO

input structure factor amplitude is FScalejFj, where jFj is the

theoretically computed structure factor amplitude. hdensityi

denotes the average electron density over all the grid points.

The figure shows that, when the scale factor FScale is much

smaller than one, hdensityi approaches 0.5 while the R-factor

is close to zero since in this case the upper bound in electron

density in the HIO procedure �H ¼ 1:0 is quite large,

equivalent to there being no upper limit constraint. When

FScale approaches 1, hdensityi approaches the ideal value of

0.38 and starts to become larger, in proportional to FScale

once FScale exceeds 1. The R-factor jumps once FScale

exceeds 1.1.

6. Conclusions

Since a summation of Fourier series does not represent a

sharp-featured object well, a natural choice is not to normalize

the structure factors to those of point atoms. Normalizing the

structure factors to those of solid spheres with uniform elec-

tron density has the advantage of establishing an upper limit

for electron density over a wide region in real space. This

apparently helps in the HIO procedure to faithfully recon-

struct the original object, as demonstrated by the examples in

this paper. The electron-density bounds limit the value which

the phase can take for a newly added term in the Fourier-series

summation for the electron density, and force the old phases

(already in the series) to adjust to match the density bound

criteria. Therefore, the more terms in the summation, the

tighter are the phase values. Using 500- and 1000-atom carbon

cluster crystals as examples, in the case of the availability of

the Bragg peaks up to resolutions of about the atom radius,

with the central peak available, the original objects can easily

be reconstructed through the HIO procedure, with the solid

sphere radius set at about half of the atom radius. In addition,

results in this paper suggest that, with Bragg peaks available

up to any resolution, including high resolution, even without

the central peak, with a proper choice of ð�S; �HÞ, such as

ð�S ¼ 0:87; �H ¼ 1:2Þ, the original object can still be recon-

structed well. In contrast, if the structure factors are not

normalized, the HIO procedure gives for the 500-atom carbon

cluster crystal (SNR = 35), at a low resolution of 2.27 Å,

he�2i ¼ 1:16 and he�3i ¼ 1:30, and, at a high resolution of

0.50 Å, he�2i ¼ 1:25 and he�3i ¼ 1:36. The large mean phase

errors with the non-normalized structure factors are not

different from those from random positive electron densities.

We note that the electron density of a C atom is sharply

peaked around the atom center. Normalizing the structure

factors to point atoms is equivalent to normalizing to solid

spheres with an infinitely large �S. Fig. 8 suggests that, when

�S � 1, the mean phase errors will be very large. In fact, when

normalizing to point atoms, at a resolution of 0.50 Å, for the

500-atom carbon cluster crystal, the HIO procedure gives

he�2i ¼ 1:18 and he�3i ¼ 1:30 whereas a normalized-to-solid-

sphere procedure with �S ¼ 2 gives he�2i ¼ 0:48 and

he�3i ¼ 0:62. Examples of reconstructing two-dimensional

crystal structures at both high and low resolutions are given as
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Figure 12
Plots of the averages of the R-factors versus iteration numbers for five
HIO runs, at a resolution of 0.50 Å (Na ¼ Nb ¼ Nc ¼ 37), for the 500-
atom carbon cluster crystal, at an SNR of 2.8 (cross), 5.1 (circle), 9.9
(square), and 20 (diamond), respectively. �S ¼ 2 and �H ¼ 1:2. The
central peak is available.

Figure 13
Plots of the R-factors (diamond) and average electron densities
(square) versus the structure factor scale factor, averaged over 20
HIO runs, for the 500-atom carbon cluster, at a resolution of 2.27 Å
(Na ¼ Nb ¼ Nc ¼ 9), SNR ¼ 680, �S ¼ 1:0, �H ¼ 1:0 and 200� 2
iterations. The central peak is unavailable.



well. Good results of solving many other two- and three-

dimensional crystal structures have also been obtained.

When the real-space grid is fine enough, i.e. high-resolution

data are available, the crystallographic R-factor and electron-

density fluctuation are all good indicators of whether a faithful

solution is found. However, when only low-resolution data are

available, in general, there are not enough terms in the

Fourier-series summation to limit the phases to tight regions

and, therefore, multiple solutions can occur. We approach this

problem by enlarging the solid-sphere radius so that the

electron-density fluctuation remains a good measure. In the

case of sparsely distributed atoms in a crystal, when only low-

resolution data are available, the spheres may need to be

enlarged two to three times (and correspondingly the elec-

tron-density upper limit �H) of their original size.

We also studied the effects of noise and the scale factor for

the Bragg peaks. Our results suggest that, when the SNR is

larger than 20, the noise impact on obtaining a solution may be

small. We have shown that, when the scale factor is larger than

the real one, the obtained average electron density is

proportional to the scale factor, and, when the scale factor

exceeds the real one by 10%, the R-factor starts to become

much bigger.

It has been shown (unpublished) that, for a hypothetical

two-dimensional crystal composed of two types of discs of the

same radii but different electron densities (one type has an

electron density of one and the other of two), the algorithm

reconstructs the object well when high-resolution data are

available, with the electron-density upper limit �H set slightly

above two. Whether the algorithm can be successfully applied

to solve real crystal structures composed of different types of

atoms is unsure. One major reason is that the ratio of the

structure factor amplitudes from two different types of atoms

is not a constant over the entire available Bragg-peak loca-

tions. But the variation may be small enough to give a solution.

In the case of a crystal composed of atoms of carbon, nitrogen

and oxygen, the denominator in equation (1) can be the

average of the structure factor amplitudes of carbon and

oxygen.

I thank V. Elser and D. R. Luke for useful communications,

and Hongliang Xu for explaining to me his direct phasing

method. This research was supported by NIH grant RR07707

to Keith Moffat.

References

Chapman, H. N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S. P.,
Cui, C., Howells, M. R., Rosen, R., He, H., Spence, J. C. H.,
Weierstall, U., Beetz, T., Jacobsen, C. & Shapiro, D. (2006). J. Opt.
Soc. Am. 23, 1179–1200.

Elser, V. (2003a). J. Opt. Soc. Am. 20, 40–55.
Elser, V. (2003b). Acta Cryst. A59, 201–209.
Fienup, J. R. (1982). Appl. Optics, 21, 2758–2769.
Gerchberg, R. W. & Saxton, W. O. (1972). Optik (Stuttgart), 35,

237–246.
He, H., Marchesini, S., Howells, M., Weierstall, U., Chapman, H.,

Hau-Riege, S., Noy, A. & Spence, J. C. H. (2003). Phys. Rev. B, 67,
174114.

Marchesini, S., He, H., Chapman, H. N., Hau-Riege, S. P., Noy, A.,
Howells, M. R., Weierstall, U. & Spence, J. C. H. (2003). Phys. Rev.
B, 68, 140101.

Miao, J., Charalambous, P., Kirz, J. & Sayre, D. (1999). Nature
(London), 400, 342–344.

Miao, J., Ishikawa, T., Anderson, E. H. & Hodgson, K. O. (2003).
Phys. Rev. B, 67, 174104.

Miao, J., Ishikawa, T., Johnson, B., Anderson, E. H., Lai, B. &
Hodgson, K. O. (2002). Phys. Rev. Lett. 89, 088303.

Miller, R., DeTitta, G. T., Langs, R. J. D. A., Weeks, C. M. &
Hauptman, H. A. (1993). Science, 259, 1430–1433.
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